群準同型の単射の必要十分条件でおもしろいものを知ったので記す.
補題
\( A, B \) を群,\( f\colon A \to B \) を群準同型とする.
\( f^{-1}\left(1_{B} \right) = \{ 1_{A} \} \) ならば,\(f\) は単射.
証明.
\(f\left( a_{0} \right) = f\left( a_{1} \right)\) を仮定する.
すると,
\[f\left( a_{0} \right) \left(f\left( a_{1} \right) \right)^{-1} = 1_{B} \]
である.\(f\) は群準同型なので
\[f\left( a_{0}a_{1}^{-1} \right) = 1_{B}. \]
\( f^{-1}\left(1_{B} \right) = \{ 1_{A} \} \) であるから,
\[a_{0}a_{1}^{-1}=1_{A}. \]
よって,\(a_{0}=a_{1}\).ゆえに \(f\) は単射である. \(\blacksquare\)
命題
\( A, B \) を群,\( f\colon A \to B \) を群準同型とする.
ある \(b\in B\) について,その\(f\) による引き戻しが一点集合ならば,\(f\) は単射.
証明.
\( f^{-1}\left( b \right) = \{ a \} \) を仮定する.
\( a' \in f^{-1}\left( 1_{B} \right) \) と仮定する.
\begin{align*}
b &= f\left(a\right) \\
&= f\left(a\right) \cdot 1_{B} \\
&= f\left(a\right) \cdot f\left(a'\right) \\
&= f\left( aa' \right)
\end{align*}
よって,\(aa'\in f^{-1}\left( b \right)\). \( f^{-1}\left( b \right) = \{ a \} \) より,\(aa'=a. \) ゆえに\(a'=1_{A}.\)
以上より\( f^{-1}\left(1_{B} \right) = \{ 1_{A} \}. \) 補題より\(f\) は単射.\(\blacksquare\)