Sokratesさんの備忘録ないし雑記帳

思考の流し台. 駄文注意.

【備忘録】人生で一度は証明を追いたい命題一覧

 だいぶ前にTwitterで「人生で一度は証明を追いたい定理」とかいう話題が盛り上がっていた. もとツイートを探そうかお思ったんだが, 見つからなかった(←探し方が悪い)ので誰が言い始めたのかはわからないのだが, 「なるほど, 確かにそういう定理・命題・補題はいくつかあるな」と思ったのを覚えている. 

 ふと, そういうものをまとめてみようかという気分になったので, ここに一覧を晒すことにした. これは自分のモチベーション維持*1と「この命題の証明もかっこいいで」という情報が入ってくることを期待してのものである. 難易度がバラバラだったり分野に偏りがあるがご容赦願おう. どうせこの後どんどん増えていくし. 

整数論

・Fermatの最終定理 

  どうあがいても追いたい証明一位だった. ここが原点の数学徒は多いのでは. 

・Gelfond-Schneider の定理

  超越数論の一里塚のはず. 超越数論でとてもでかい結果と聞いているので興味はある. 

Logic

・Gödelの不完全性定理(特に第二の方)

  概略を追ったことはあるはず(ホントに追えてたかも怪しい)だが, やっぱりよくわかっていないのでもう一度追いたい. 主張はよく使うのにね. 

・Presburger arithmetic が否定完全であること

 これも結果はよく使うのに証明をよく知らない. Quantifier freeの形に変形するらしいのだがよくわかっとらん. 

Lindstrom Theorem

 最近知った定理で一階述語論理は「コンパクト性定理」と「Löwenheim–Skolem theorem」で特徴づけられるというものらしい. すさまじくきれいな定理である. 

・Getzen の算術の無矛盾性証明

Set Theory

・ZFCと連続体仮説の独立性. 

  Forcing わかりません案件.

・ZFのモデルで$\mathbb{R}$の任意の部分集合が Lebesgue 可測であるものが存在する. 

・Diaconescu's theorem

Category Theory

・米田の補題

 追ったんだよ, 一回. でも理解できてない感がすごいし, 定理の主張の内容も明らかによくわかってない. 圏論力を高めて再チャレンジしたい. 

*1:「えー, まだこの証明追っていないのぉ」という数学徒からの煽りとも言う. あまり言われると心折れるのでほどほどにネ.